大ji巴好深好爽又大又粗视频丨日韩视频一二三丨国产精选污视频在线观看丨亚洲色 国产 欧美 日韩丨日韩一级免费视频丨波多野结衣精品在线丨伊人久久大香线蕉av不卡丨日本少妇中出丨国产在热线精品av丨欧美疯狂xxxxxbbbbb丨男人天堂亚洲丨性欧美video高清丰满丨人体写真 福利视频丨中文字幕乱码亚洲无线码小说丨欧洲人激情毛片无码视频丨中文字幕+乱码+中文字幕一区丨爱的色放在线丨亚洲最大av无码网站丨欧美爱视频丨国产精品久久婷婷六月丁香

Effect of Confinement on Proton Transport Mechanisms in Block Copolymer/Ionic Liquid Membranes

2019-11-11 15:50:55 adman 86
文件格式 :
.pdf
立即下載

Effect of Confinement on Proton Transport Mechanisms in Block Copolymer/Ionic Liquid Membranes

  • Megan L. Hoarfrost*??

  • Madhu S. Tyagi§

  • Rachel A. Segalman?

  • Jeffrey A. Reimer??


Abstract

Abstract Image

Nanostructured membranes containing structural and proton-conducting domains are of great interest for a wide range of applications requiring high conductivity coupled to high thermal stability. Understanding the effect of nanodomain confinement on proton-conducting properties in such materials is essential for designing new, improved membranes. This relationship has been investigated for a lamellae-forming mixture of poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) with ionic liquid composed of imidazole and bis(trifluoromethylsulfonyl)imide, where the ionic liquid selectively resides in the P2VP domains of the block copolymer. Quasi-elastic neutron scattering and NMR diffusion measurements reveal increased prevalence of a fast proton hopping transport mechanism, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared with that in a mixture of ionic liquid with P2VP homopolymer. The proton transference number in both samples is significantly higher than that in the neat ionic liquid, which could be taken advantage of for applications such as proton exchange membrane fuel cells and actuators. These results portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.



標簽:  LiTFSI 離子液體